Quantitative functional calculus in Sobolev spaces
نویسنده
چکیده
In the framework of Sobolev (Bessel potential) spaces Hn(R,R or C), we consider the nonlinear Nemytskij operator sending a function x ∈ R 7→ f(x) into a composite function x ∈ R 7→ G(f(x), x). Assuming sufficient smoothness for G, we give a ”tame” bound on the Hn norm of this composite function in terms of a linear function of the Hn norm of f , with a coefficient depending on G and on the Ha norm of f , for all integers n, a, d with a > d/2. In comparison with previous results on this subject, our bound is fully explicit, allowing to estimate quantitatively the Hn norm of the function x 7→ G(f(x), x). When applied to the case G(f(x), x) = f2(x), this bound agrees with a previous result of ours on the pointwise product of functions in Sobolev spaces.
منابع مشابه
Traces of weighted Sobolev spaces. Old and new
We give short simple proofs of Uspenskii’s results characterizing Besov spaces as trace spaces of weighted Sobolev spaces. We generalize Uspenskii’s results and prove the optimality of these generalizations. We next show how classical results on the functional calculus in the Besov spaces can be obtained as straightforward consequences of the theory of weighted Sobolev spaces.
متن کاملm at h . FA ] 2 5 O ct 2 00 4 Quantitative functional calculus in Sobolev spaces
In the framework of Sobolev (Bessel potential) spaces Hn(R,R or C), we consider the nonlinear Nemytskij operator sending a function x ∈ R 7→ f(x) into a composite function x ∈ R 7→ G(f(x), x). Assuming sufficient smoothness for G, we give a ”tame” bound on the Hn norm of this composite function in terms of a linear function of the Hn norm of f , with a coefficient depending on G and on the Ha n...
متن کاملFunctional calculus for tangentially elliptic operators on foliated manifolds ∗
3 Pseudodifferential functional calculus 7 3.1 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Action in Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 f(A) as pseudodifferential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 The case of Finsler foliations . . . . . . . . . . . . ...
متن کاملA Deconvolution Estimate and Localization in Spline-type Spaces
In this article some explicit estimates on the decay of the convolutive inverse of a sequence are proved. They are derived from the functional calculus for Sobolev algebras. Applications include localization in spline-type spaces and oversampling schemes.
متن کاملar X iv : m at h / 03 05 33 1 v 1 [ m at h . FA ] 2 3 M ay 2 00 3 Quantitative functional calculus in
In the framework of Sobolev (Bessel potential) spaces Hn(R,R or C), we consider the nonlinear Nemytskij operator sending a function x ∈ R 7→ f(x) into a composite function x ∈ R 7→ G(f(x), x). Assuming sufficient smoothness for G, we give a ”tame” bound on the Hn norm of this composite function in terms of a linear function of the Hn norm of f , with a coefficient depending on G and on the Ha n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004